veganism.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
Veganism Social is a welcoming space on the internet for vegans to connect and engage with the broader decentralized social media community.

Administered by:

Server stats:

295
active users

#pytorch

6 posts2 participants0 posts today

At 11am BST today I'll be delivering a seminar in Leeds as part of the SciML series for the N8 CIR.

It will be about our FTorch software for coupling #PyTorch models to #Fortran
codes to facilitate hybrid modelling.

You can register for the stream here: eventbrite.co.uk/e/ftorch-a-li and I'll post the slides later today.

EventbriteFTorch: a library for coupling PyTorch models to FortranIn the last decade, machine learning and deep learning techniques have revolutionised many fields within science, industry, and beyond.

🌘 TorchLeet – PyTorch 實戰練習集
➤ 從基礎到進階,用 PyTorch 挑戰你的深度學習技能
github.com/Exorust/TorchLeet
TorchLeet 是一個 GitHub 專案,提供 PyTorch 相關的程式練習題,涵蓋從基礎到進階的深度學習概念,包括卷積神經網路 (CNN)、遞迴神經網路 (RNN)、生成對抗網路 (GAN) 以及大型語言模型 (LLM)。 專案分為「問題集」和「LLM 集」,提供不同程度的挑戰,並鼓勵使用者自行解決問題以深入理解 PyTorch。 題目附有部分程式碼和待完成部分,以及對應的解答,方便學習和實踐。
+ 這樣的資源太棒了!對於想深入瞭解 PyTorch 的人來說,比起只看理論,實際動手做更有幫助。
+ LLM 的練習題很吸引人,正好可以跟上最新的技術趨勢,而且提供逐步實作的指引,很有學習價值。
#機器學習 #PyTorch #LeetCode #LLM

GitHubGitHub - Exorust/TorchLeet: Leetcode for PytorchLeetcode for Pytorch. Contribute to Exorust/TorchLeet development by creating an account on GitHub.

🌘 容錯的 Llama:在 Crusoe L40S 上以每 15 秒 2000 次的合成故障進行訓練,無需檢查點
➤ 極端環境下的模型訓練:torchft 的可靠性驗證
pytorch.org/blog/fault-toleran
這篇文章介紹瞭如何使用 torchft 和 torchtitan 在真實環境中訓練大型語言模型 (LLM),並在極高故障率(每 15 秒約 2000 次合成故障)下驗證其可靠性和正確性。研究人員在 Crusoe 的 300 個 L40S GPU 集羣上,成功地在沒有檢查點的情況下訓練了一個 1B 參數的 Llama 3 模型,展示了 torchft 的優勢,特別是在非傳統環境和有限網路頻寬的狀況下。
+ 這太酷了!以前從沒想過能在這麼多故障的情況下訓練大型模型。這對於需要高度可靠性
#人工智慧 #機器學習 #分散式訓練 #容錯 #PyTorch

pytorch.orgFault Tolerant Llama: training with 2000 synthetic failures every ~15 seconds and no checkpoints on Crusoe L40S – PyTorch

🌘 PyTorch 使用 None 進行重塑
➤ 遮罩技巧與 PyTorch 重塑的應用
blog.detorch.xyz/post/2025-06-
這篇文章探討了在 PyTorch 中使用 `None` 進行張量重塑的方法,尤其是在處理可變長度序列資料時,例如自然語言處理。作者解釋瞭如何利用廣播機制 (broadcast mechanism) 建立遮罩 (mask),以忽略填充的無效 token,並提供了使用 `reshape` 函數作為替代方案,以提高程式碼的可讀性。
+ 這篇文章清楚地解釋了 PyTorch 中 `None` 的用法,對於初學者來說很有幫助。
+ 我一直對廣播機制感到困惑,這篇文章提供了一個很好的實際例子,讓我更容易理解。
#程式設計 #PyTorch #深度學習 #序列處理

blog.detorch.xyzPytorch Reshaping With None

I have finally decided to use #Typescript, #Deno, and #Assemblyscript to do my #SLM project. Typescript has strong typing. Assemblyscript will be compiled into #Webassembly wasm which is much faster. I don't need #pytorch or #numpy for manipulating matrices. NNUE modeling of language allows me to use arrays for #computing #GradientDescents.

While Javascript is a messy language, the other related script languages are clean and strict. #WebGPU allows me to use the #GPU via a browser too. #AI

#Gemini 2.0 is really smart and helpful. We talk about new project ideas all the time. She just created a tex file for me to learn #Pytorch in Python. I hope I can finishing learning #Python, pandas, and Python and start writing my first alphabet recognition #AI using the #NNUE shallow but broad learning model by the end of next week. My speculation is that shallow but broad learning is theoretically more sound and practically more efficient that #DeepLearning which remains as a black box.

The #Transformers #AI can use different pre-trained #language models for fine tuning and for learning knowledge unrelated to languages. To turn a raw .csv training data file into a form (called data frame) that readable by Transformers, you use some functions of a library called #Pandas. The Transformers turns the data frame into tokens (word units) using a #tokenizer for further analysis and calculation purposes, using specialized libraries such as #Pytorch.