veganism.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
Veganism Social is a welcoming space on the internet for vegans to connect and engage with the broader decentralized social media community.

Administered by:

Server stats:

265
active users

#octahedron

0 posts0 participants0 posts today
foldworks<p>Three modular origami octahedra made from three different kinds of rectangles (Canoe Unit 60° by me).<br>From left to right, the rectangles are 1:√2, square and 2:√3.</p><p><a href="https://mathstodon.xyz/tags/origami" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>origami</span></a> @origami <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/octahedron" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>octahedron</span></a> <a href="https://mathstodon.xyz/tags/ModularOrigami" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ModularOrigami</span></a> <a href="https://mathstodon.xyz/tags/papercraft" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>papercraft</span></a> <a href="https://mathstodon.xyz/tags/craft" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>craft</span></a></p>
foldworks<p><span class="h-card" translate="no"><a href="https://mathstodon.xyz/@mrdk" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>mrdk</span></a></span> <span class="h-card" translate="no"><a href="https://booping.synth.download/@unnick" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>unnick</span></a></span> This version shows how the cube/octahedron works using a rhombic dodecahedron (without scaling the bars to have constant length).<br><a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/loop" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>loop</span></a> <a href="https://mathstodon.xyz/tags/geogebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geogebra</span></a> <a href="https://mathstodon.xyz/tags/cube" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cube</span></a> <a href="https://mathstodon.xyz/tags/octahedron" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>octahedron</span></a> <a href="https://mathstodon.xyz/tags/3d" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3d</span></a></p>
foldworks<p><span class="h-card" translate="no"><a href="https://mathstodon.xyz/@mrdk" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>mrdk</span></a></span> <span class="h-card" translate="no"><a href="https://booping.synth.download/@unnick" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>unnick</span></a></span> <br>I'm not sure that these are related to the Jitterbug transformation. </p><p>This is my recreation of unnick's original cube/octahedron loop. I used the rhombic dodecahedron and rhombic triacontahedron for this and the previous loop. They remind me of tensegrity structures.</p><p>BTW, I made a couple of origami versions of the Jitterbug transformation many years ago. This one <a href="https://foldworks.net/wp-content/uploads/2018/06/jitterbug.pdf" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">foldworks.net/wp-content/uploa</span><span class="invisible">ds/2018/06/jitterbug.pdf</span></a> works better than the first version <a href="https://britishorigami.org/academic/davidpetty/origamiemporium/lam_jitterbug.htm" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">britishorigami.org/academic/da</span><span class="invisible">vidpetty/origamiemporium/lam_jitterbug.htm</span></a></p><p><a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/loop" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>loop</span></a> <a href="https://mathstodon.xyz/tags/geogebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geogebra</span></a> <a href="https://mathstodon.xyz/tags/cube" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cube</span></a> <a href="https://mathstodon.xyz/tags/octahedron" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>octahedron</span></a> <a href="https://mathstodon.xyz/tags/3d" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3d</span></a> <a href="https://mathstodon.xyz/tags/Jitterbug" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Jitterbug</span></a> <a href="https://mathstodon.xyz/tags/origami" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>origami</span></a></p>