veganism.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
Veganism Social is a welcoming space on the internet for vegans to connect and engage with the broader decentralized social media community.

Administered by:

Server stats:

295
active users

#LambdaCalculus

3 posts3 participants0 posts today
HoldMyType<p><span class="h-card" translate="no"><a href="https://mathstodon.xyz/@rzeta0" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>rzeta0</span></a></span> <br>Ofc <br>Kleene–Rosser paradox demonstrates a contradiction in untyped <a href="https://mathstodon.xyz/tags/lambdacalculus" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>lambdacalculus</span></a>: it's possible to construct a lambda expression (like k = λ x . ( ¬ ( x x ) ) k=λx.(¬(xx))) so that when it's applied to itself, you get k k = ¬ ( k k ) kk=¬(kk)—which is a logical contradiction. This showed that untyped lambda calculus isn't suitable as a foundation for mathematical logic. That won't type check in <a href="https://mathstodon.xyz/tags/Haskell" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Haskell</span></a></p>
HoldMyTypeIomonad is not magic , but nothing less than the magic
Tariq<p>Is this right?</p><p>For a type in λP</p><p>A:*, B:* ⊢ ∏ z: A. (∏ y:(∏ x:A.B).B) : *</p><p>the following is an inhabitant:</p><p>λ z:A . (λ y:(∏ x:A.B) . yz) </p><p>It's taken me 3 days to work out why I initially couldn't find an inhabitant. I've learned along the way. I hope the above is correct.</p><p><a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/cs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cs</span></a> <a href="https://mathstodon.xyz/tags/typetheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>typetheory</span></a> <a href="https://mathstodon.xyz/tags/lambdacalculus" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>lambdacalculus</span></a></p>
HoldMyType<p>Higher order functions re L(ast(IFO)?<br><a href="https://mathstodon.xyz/tags/lambdacalculus" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>lambdacalculus</span></a></p>
Tariq<p>I'm struggling with what should be a simple structural induction proof.</p><p>Prove that there are no Γand N in λω such that \[Γ ⊢ \Box : N\] is derivable.</p><p>Help very welcome!</p><p><a href="https://cs.stackexchange.com/questions/173317/help-with-structural-induction-proof-that-Γ-⊢-box-n-is-not-derivable-in-λω" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">cs.stackexchange.com/questions</span><span class="invisible">/173317/help-with-structural-induction-proof-that-Γ-⊢-box-n-is-not-derivable-in-λω</span></a></p><p><a href="https://mathstodon.xyz/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mathstodon.xyz/tags/cs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cs</span></a> <a href="https://mathstodon.xyz/tags/lambdacalculus" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>lambdacalculus</span></a> <a href="https://mathstodon.xyz/tags/typetheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>typetheory</span></a></p>
Björn Gohla<p>Found this in Barendregt's definition of combinatory logic 😆 </p><p><a href="https://mathstodon.xyz/tags/lambdaCalculus" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>lambdaCalculus</span></a> <a href="https://mathstodon.xyz/tags/functionalProgramming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>functionalProgramming</span></a> <a href="https://mathstodon.xyz/tags/logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>logic</span></a> <a href="https://mathstodon.xyz/tags/SPQR" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SPQR</span></a></p>
Artyom Bologov<p><span class="h-card" translate="no"><a href="https://merveilles.town/@neauoire" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>neauoire</span></a></span> inspired me with their idea of a <a href="https://merveilles.town/tags/UXN" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>UXN</span></a> book and I wondered what my book might be about. And then I realized! I already have a series of <a href="https://merveilles.town/tags/blogpost" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>blogpost</span></a>-s about <a href="https://merveilles.town/tags/LambdaCalculus" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LambdaCalculus</span></a>, so I can just continue that and I'll have a book! Intention in place, I set to continue my gargantuan series of "Making Sense of Lambda Calculus" posts. So here's a (0-indexed) part 5, "Bring Computation to (Aggregate) Data":</p><p><a href="https://aartaka.me/lambda-5.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">aartaka.me/lambda-5.html</span><span class="invisible"></span></a></p><p><span class="h-card" translate="no"><a href="https://oldbytes.space/@amoroso" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>amoroso</span></a></span> <span class="h-card" translate="no"><a href="https://merveilles.town/@bouncepaw" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>bouncepaw</span></a></span> did you two read the previous episodes? How were they?</p>
Light<p>This is cool:<br><a href="https://tromp.github.io/cl/diagrams.html" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">tromp.github.io/cl/diagrams.ht</span><span class="invisible">ml</span></a></p><p><a href="https://noc.social/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://noc.social/tags/lambdacalculus" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>lambdacalculus</span></a></p>
HoldMyType<p><a href="https://mathstodon.xyz/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a> lets ypu instantiate a function anywhere and a ( recursive) function definition can be self contained and last i checked its notorious for its type checking <br><a href="https://mathstodon.xyz/tags/Lambdacalculus" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Lambdacalculus</span></a> wont let you do that unyil you give it the required fixed point function <br><a href="https://mathstodon.xyz/tags/typetheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>typetheory</span></a><br>Oh and fixed point need not be in R<br>Unlike rieman zeta ?<br>OTOH python wont spit potential Nonsense</p>
HoldMyType<p>term&nbsp;Q = λ1((λ11)(λλλλλ14(3(55)2)))1&nbsp;concatenates two copies of its input, proving that</p><p>KS(xx) ≤ ℓ(x) + 66Applying it to its own encoding gives a 132 bit&nbsp;quine:</p><p>U(blc(Q)&nbsp;blc(Q) : Nil) = blc(Q)&nbsp;blc(Q)<br><a href="https://mathstodon.xyz/tags/lambdacalculus" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>lambdacalculus</span></a> <br><a href="https://tromp.github.io/cl/Binary_lambda_calculus.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">tromp.github.io/cl/Binary_lamb</span><span class="invisible">da_calculus.html</span></a></p>
Csepp 🌢<p>:neofox_owo: !<br>&gt; Forsp: A <a href="https://merveilles.town/tags/Forth" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Forth</span></a>+<a href="https://merveilles.town/tags/Lisp" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Lisp</span></a> Hybrid <a href="https://merveilles.town/tags/LambdaCalculus" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LambdaCalculus</span></a> Language<br><a href="https://xorvoid.com/forsp.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">xorvoid.com/forsp.html</span><span class="invisible"></span></a></p>
Artyom Bologov<p>In the spirit of (not-that-radical, unfortunately) openness (inspired by none other than <span class="h-card" translate="no"><a href="https://mas.to/@TodePond" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>TodePond</span></a></span>,) let me share a thing I've been quietly working on for the last couple of months: <a href="https://merveilles.town/tags/Lamber" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Lamber</span></a>, my pure <a href="https://merveilles.town/tags/LambdaCalculus" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LambdaCalculus</span></a> -compiling <a href="https://merveilles.town/tags/FunctionalProgramming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FunctionalProgramming</span></a> language inspired by <a href="https://merveilles.town/tags/Lua" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Lua</span></a> and <a href="https://merveilles.town/tags/haskell" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>haskell</span></a> </p><p><a href="https://github.com/aartaka/lamber" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">github.com/aartaka/lamber</span><span class="invisible"></span></a></p><p><a href="https://merveilles.town/tags/theWorkshop" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theWorkshop</span></a></p>
José A. Alonso<p>Readings shared February 22, 2025. <a href="https://jaalonso.github.io/vestigium/posts/2025/02/22-readings_shared_02-22-25" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">jaalonso.github.io/vestigium/p</span><span class="invisible">osts/2025/02/22-readings_shared_02-22-25</span></a> <a href="https://mathstodon.xyz/tags/LambdaCalculus" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LambdaCalculus</span></a> <a href="https://mathstodon.xyz/tags/Lisp" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Lisp</span></a> <a href="https://mathstodon.xyz/tags/Emacs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Emacs</span></a></p>
José A. Alonso<p>Lambda calculus and Lisp, part 2. <a href="https://babbagefiles.xyz/lambda-calculus-and-lisp-02-recursion/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">babbagefiles.xyz/lambda-calcul</span><span class="invisible">us-and-lisp-02-recursion/</span></a> <a href="https://mathstodon.xyz/tags/LambdaCalculus" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LambdaCalculus</span></a> <a href="https://mathstodon.xyz/tags/Emacs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Emacs</span></a> <a href="https://mathstodon.xyz/tags/Lisp" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Lisp</span></a></p>
José A. Alonso<p>Lambda calculus and Lisp, part 1. <a href="https://babbagefiles.xyz/lambda-calculus-and-lisp-01/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">babbagefiles.xyz/lambda-calcul</span><span class="invisible">us-and-lisp-01/</span></a> <a href="https://mathstodon.xyz/tags/LambdaCalculus" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LambdaCalculus</span></a> <a href="https://mathstodon.xyz/tags/Lisp" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Lisp</span></a></p>
José A. Alonso<p>Readings shared February 16, 2025. <a href="https://jaalonso.github.io/vestigium/posts/2025/02/16-readings_shared_02-16-25" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">jaalonso.github.io/vestigium/p</span><span class="invisible">osts/2025/02/16-readings_shared_02-16-25</span></a> <a href="https://mathstodon.xyz/tags/CategoryTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CategoryTheory</span></a> <a href="https://mathstodon.xyz/tags/FunctionalProgramming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FunctionalProgramming</span></a> <a href="https://mathstodon.xyz/tags/Haskell" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Haskell</span></a> <a href="https://mathstodon.xyz/tags/LLMs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLMs</span></a> <a href="https://mathstodon.xyz/tags/LambdaCalculus" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LambdaCalculus</span></a> <a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Reasoning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Reasoning</span></a></p>
José A. Alonso<p>The relationship between category theory, lambda calculus, and functional programming in Haskell. ~ Antonio Montano. <a href="https://4m4.it/posts/category-theory-functional-programming-compositionality/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">4m4.it/posts/category-theory-f</span><span class="invisible">unctional-programming-compositionality/</span></a> <a href="https://mathstodon.xyz/tags/Haskell" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Haskell</span></a> <a href="https://mathstodon.xyz/tags/FunctionalProgramming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FunctionalProgramming</span></a> <a href="https://mathstodon.xyz/tags/CategoryTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CategoryTheory</span></a> <a href="https://mathstodon.xyz/tags/LambdaCalculus" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LambdaCalculus</span></a></p>
tc<p><a href="https://mathstodon.xyz/tags/functionalprogramming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>functionalprogramming</span></a> </p><p>Many people's vote for most <a href="https://mathstodon.xyz/tags/beautiful" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>beautiful</span></a> construct in <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> is \[ e^{i\pi}+1=0. \]</p><p>Yeah, maybe. But I think a close contender (if you include the <a href="https://mathstodon.xyz/tags/CS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CS</span></a> realm) is \[ \lambda b.\lambda e.eb . \]</p><p>This serves as the complete <a href="https://mathstodon.xyz/tags/Church" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Church</span></a> encoding of <a href="https://mathstodon.xyz/tags/exponentiation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>exponentiation</span></a> in <a href="https://mathstodon.xyz/tags/LambdaCalculus" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LambdaCalculus</span></a>, driving home subtler points about <a href="https://mathstodon.xyz/tags/function" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>function</span></a> <a href="https://mathstodon.xyz/tags/mapping" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mapping</span></a> and ordered pairs and the primacy of exponentiation over add/mult, both of which have uglier <a href="https://mathstodon.xyz/tags/LC" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LC</span></a> representations.</p><p><a href="https://en.wikipedia.org/wiki/Lambda_calculus#Arithmetic_in_lambda_calculus" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Lambda_c</span><span class="invisible">alculus#Arithmetic_in_lambda_calculus</span></a></p>