veganism.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
Veganism Social is a welcoming space on the internet for vegans to connect and engage with the broader decentralized social media community.

Administered by:

Server stats:

296
active users

#fluiddynamics

4 posts3 participants0 posts today
Nicole Sharp<p><strong>Branching Dendrites</strong></p><p>This award-winning aerial image by photographer Stuart Chape shows a <a href="https://en.wikipedia.org/wiki/Tidal_creek" rel="nofollow noopener" target="_blank">tidal creek</a> in Lake Cakora, New South Wales, Australia. At first glance, it looks much like any river delta, with branching dendritic paths that split into smaller and smaller waterways. That’s deceptive, though, because very different forces shape this creek. Because tides move in and out, a tidal creek is home to flows that move both directions — toward and away from the branches. That also means that flow speeds can change rapidly as the tides shift, which in turn changes which sediments get lifted, dropped, and moved around the creek bed. (Image credit: <a href="https://internationalaerialphotographer.com/index.php/archive/2025-awards-book?2" rel="nofollow noopener" target="_blank">S. Chape/IAPOTY</a>; via <a href="https://www.thisiscolossal.com/2025/07/international-aerial-photo-contest/?__readwiseLocation=" rel="nofollow noopener" target="_blank">Colossal</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/branching-flow/" target="_blank">#branchingFlow</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fractals/" target="_blank">#fractals</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geology/" target="_blank">#geology</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/tides/" target="_blank">#tides</a></p>
j_bertolotti<p><a href="https://mathstodon.xyz/tags/PhysicsFactlet" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PhysicsFactlet</span></a> <br>Thanks to some humidity in the air the air flow around the plane wing is clearly visible. Instead of just being deflected by the wing, the air flow tend to stick to the wing (and vice versa, the wing tends to stick to the air flow, a phenomenon known as the Coanda effect), which pulls the wing up and allow the plane to fly.<br><a href="https://mathstodon.xyz/tags/Physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Physics</span></a> <a href="https://mathstodon.xyz/tags/FluidDynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FluidDynamics</span></a> <a href="https://mathstodon.xyz/tags/CoandaEffect" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CoandaEffect</span></a> <a href="https://mathstodon.xyz/tags/Aerodynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Aerodynamics</span></a> <a href="https://mathstodon.xyz/tags/Airplanes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Airplanes</span></a></p>
Nicole Sharp<p><strong>A Variety of Vortices</strong></p><p>Winds parted around the <a href="https://en.wikipedia.org/wiki/Kuril_Islands" rel="nofollow noopener" target="_blank">Kuril Islands</a> and left behind a string of vortices in this satellite image from April 2025. This pattern of alternating vortices is known as a von Karman vortex street. The varying directions of the vortex streets show that winds across the islands ranged from southeasterly to southerly. Notice also that the size of the island dictates the size of the vortices. Larger islands create larger vortices, and smaller islands have smaller and more frequent vortices. (Image credit: M. Garrison; via <a href="https://earthobservatory.nasa.gov/images/154293/vortex-variety-hour?__readwiseLocation=" rel="nofollow noopener" target="_blank">NASA Earth Observatory</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/satellite-image/" target="_blank">#satelliteImage</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/von-karman-vortex-street/" target="_blank">#vonKarmanVortexStreet</a></p>
Nicole Sharp<p><strong>Dancing Metal Droplets</strong></p><p>Droplets of a gallium alloy are liquid at room temperature. When spiked with aluminum grains and immersed in a solution of NaOH, the droplets change shape and move in a random fashion. This video delves into the phenomenon, describing how a chemical reaction with the aluminum grains changes the local surface tension and creates Marangoni flows that make the droplets move. To get the droplet motion, you need to have the aluminum concentration just right. With too little, there’s not enough Marangoni flow. With too much, the hydrogen gas produced in the chemical reaction disrupts the droplet motion. (Video and image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.V2685366" rel="nofollow noopener" target="_blank">N. Kim</a>)</p><p><a href="https://www.youtube.com/watch?v=XYRj0Ty9udo" rel="nofollow noopener" target="_blank">https://www.youtube.com/watch?v=XYRj0Ty9udo</a></p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gofm/" target="_blank">#2024gofm</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/chemistry/" target="_blank">#chemistry</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/droplets/" target="_blank">#droplets</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/marangoni-effect/" target="_blank">#marangoniEffect</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/surface-tension/" target="_blank">#surfaceTension</a></p>
Europe Says<p><a href="https://www.europesays.com/2258152/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">europesays.com/2258152/</span><span class="invisible"></span></a> Predicting asphaltene precipitation during natural depletion of oil reservoirs by integrating SARA fractions with advanced intelligent models <a href="https://pubeurope.com/tags/AsphaltenePrecipitation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AsphaltenePrecipitation</span></a> <a href="https://pubeurope.com/tags/ChemicalEngineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ChemicalEngineering</span></a> <a href="https://pubeurope.com/tags/CrudeOil" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CrudeOil</span></a> <a href="https://pubeurope.com/tags/CrudeOilPrice" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CrudeOilPrice</span></a> <a href="https://pubeurope.com/tags/FluidDynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FluidDynamics</span></a> <a href="https://pubeurope.com/tags/HumanitiesAndSocialSciences" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HumanitiesAndSocialSciences</span></a> <a href="https://pubeurope.com/tags/LightGBM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LightGBM</span></a> <a href="https://pubeurope.com/tags/multidisciplinary" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>multidisciplinary</span></a> <a href="https://pubeurope.com/tags/OilPrice" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OilPrice</span></a> <a href="https://pubeurope.com/tags/OutlierDiscovery" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OutlierDiscovery</span></a> <a href="https://pubeurope.com/tags/Petroleum" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Petroleum</span></a> <a href="https://pubeurope.com/tags/SARAFraction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SARAFraction</span></a> <a href="https://pubeurope.com/tags/science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>science</span></a></p>
Nicole Sharp<p><strong>Lava Meets Leidenfrost</strong></p><p>Drop water on a surface much hotter than its boiling point, and the liquid will bead up and skitter over the surface, levitated on a cushion of its own vapor. In addition to making the drop hypermobile, this vapor layer insulates it from the heat of the surface, allowing it to survive longer than it would at lower temperatures. Known as the Leidenfrost effect, this phenomenon can show up in lava flows, as well.</p><p><a href="https://en.wikipedia.org/wiki/Pillow_lava" rel="nofollow noopener" target="_blank">Pillow lava</a> is a smooth, bulbous rock formed when lava breaks out underwater. The exiting lava is incandescent and, therefore, incredibly hot — hot enough to vaporize a layer of water surrounding it. The lava can continue to expand until it cools too much to sustain the vapor layer. An elastic skin builds up over the cooling lava. Eventually, a new pillow will bud off, possibly due to a surge in the lava flow or a weak point in the developing skin. (Image credit: <a href="https://unsplash.com/photos/a-close-up-of-a-large-piece-of-lava-in-the-ground-Wbi3dlc580o" rel="nofollow noopener" target="_blank">J. de Gier</a>; research credit: <a href="https://doi.org/10.1144/gsjgs.141.1.0183" rel="nofollow noopener" target="_blank">A. Mills</a>; via <a href="https://www.leidenforce.eu/cms/c_13482845/en/lava-steam-and-a-little-lesson-in-physics-exploring-the-leidenfrost-effect-in-volcanic-eruptions?id=c_13482845&amp;id=c_13482845&amp;__readwiseLocation=" rel="nofollow noopener" target="_blank">LeidenForce</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geology/" target="_blank">#geology</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/lava/" target="_blank">#lava</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/leidenfrost-effect/" target="_blank">#LeidenfrostEffect</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/vaporization/" target="_blank">#vaporization</a></p>
Nicole Sharp<p><strong>Venusian Gravity Currents</strong></p><p>Radar measurements of Venus‘s surface reveal the remains of many volcanic eruptions. One type of feature, known as a pancake dome, has a very flat top and steep sides; one dome, Narina Tholus, is over 140 kilometers wide. Since their discovery, scientists have been puzzling out how such domes could form. A <a href="https://doi.org/10.1029/2024JE008571" rel="nofollow noopener" target="_blank">recent study suggests</a> that the Venusian surface’s elasticity plays a role.</p><p>According to current models, the pancake domes are gravity currents (like a cold draft under your door, an avalanche, or the <a href="https://fyfluiddynamics.com/2019/01/today-marks-the-100th-anniversary-of-the-boston/" rel="nofollow noopener" target="_blank">Boston Molasses Flood</a>), albeit ones so viscous that they may require hundreds of thousands of Earth-years to settle. Researchers found that their simulated pancake domes best matched measurements from Venus when the lava was about 2.5 times denser than water and flowed over a flexible crust.</p><p>We might have more data to support (or refute) the study’s conclusions soon, but only if NASA’s VERITAS mission to Venus is not cancelled. (Image credit: NASA; research credit: <a href="https://doi.org/10.1029/2024JE008571" rel="nofollow noopener" target="_blank">M. Borelli et al.</a>; via <a href="https://gizmodo.com/the-strange-secret-behind-venus-pancake-volcanoes-2000608733?__readwiseLocation=" rel="nofollow noopener" target="_blank">Gizmodo</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/gravity-currents/" target="_blank">#gravityCurrents</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/planetary-science/" target="_blank">#planetaryScience</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/venus/" target="_blank">#venus</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/viscosity/" target="_blank">#viscosity</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/viscous-flow/" target="_blank">#viscousFlow</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/volcano/" target="_blank">#volcano</a></p>
AlcorNews<p>Le 45MFLU décrypte les lois secrètes du vol et des fluides, base méconnue mais essentielle pour toute aero digne de ce nom.<br><a href="https://www.sciences.univ-nantes.fr/sites/claude_saintblanquet/synophys/45meflu/45meflu.htm" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">sciences.univ-nantes.fr/sites/</span><span class="invisible">claude_saintblanquet/synophys/45meflu/45meflu.htm</span></a><br><a href="https://mastodon.social/tags/Science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Science</span></a> <a href="https://mastodon.social/tags/AerospaceEngineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AerospaceEngineering</span></a> <a href="https://mastodon.social/tags/FluidDynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FluidDynamics</span></a> <a href="https://mastodon.social/tags/MFLURevival" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MFLURevival</span></a></p>
Nicole Sharp<p><strong>Glimpses of Coronal Rain</strong></p><p>Despite its incredible heat, our sun‘s corona is so faint compared to the rest of the star that we can rarely make it out except during a total solar eclipse. But a <a href="https://doi.org/10.1038/s41550-025-02564-0" rel="nofollow noopener" target="_blank">new adaptive optic technique</a> has given us coronal images with unprecedented detail.</p><p>These images come from the 1.6-meter Goode Solar Telescope at Big Bear Solar Observatory, and they required some 2,200 adjustments to the instrument’s mirror every second to counter atmospheric distortions that would otherwise blur the images. With the new technique, the team was able to sharpen their resolution from 1,000 kilometers all the way down to 63 kilometers, revealing heretofore unseen details of plasma from solar prominences dancing in the sun’s magnetic field and cooling plasma falling as coronal rain.</p><p>The team hope to upgrade the 4-meter Daniel K. Inouye Solar Telescope with the technology next, which will enable even finer imagery. (Image credit: <a href="https://nso.edu/press-release/new-adaptive-optics-shows-stunning-details-of-our-stars-atmosphere/" rel="nofollow noopener" target="_blank">Schmidt et al./NJIT/NSO/AURA/NSF</a>; research credit: <a href="https://doi.org/10.1038/s41550-025-02564-0" rel="nofollow noopener" target="_blank">D. Schmidt et al.</a>; via <a href="https://gizmodo.com/telescope-upgrade-reveals-suns-coronal-rain-in-unprecedented-detail-2000607634" rel="nofollow noopener" target="_blank">Gizmodo</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/magnetic-field/" target="_blank">#magneticField</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/magnetohydrodynamics/" target="_blank">#magnetohydrodynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/plasma/" target="_blank">#plasma</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/solar-dynamics/" target="_blank">#solarDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/stellar-evolution/" target="_blank">#stellarEvolution</a></p>
Nicole Sharp<p><strong>Bow Shock Instability</strong></p><p>There are few flows more violent than planetary re-entry. Crossing a shock wave is always violent; it forces a sudden jump in density, temperature, and pressure. But at re-entry speeds this shock wave is so strong the density can jump by a factor of 13 or more, and the temperature increase is high enough that it literally rips air molecules apart into plasma. </p><p>Here, researchers show a numerical simulation of flow around a space capsule moving at Mach 28. The transition through the capsule’s bow shock is so violent that within a few milliseconds, all of the flow behind the shock wave is turbulent. Because turbulence is so good at mixing, this carries hot plasma closer to the capsule’s surface, causing the high temperatures visible in reds and yellows in the image. Also shown — in shades of gray — is the vorticity magnitude of flow around the capsule. (Image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.P2685195" rel="nofollow noopener" target="_blank">A. Álvarez and A. Lozano-Duran</a>) </p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gofm/" target="_blank">#2024gofm</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/cfd/" target="_blank">#CFD</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/computational-fluid-dynamics/" target="_blank">#computationalFluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/hypersonic/" target="_blank">#hypersonic</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/instability/" target="_blank">#instability</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/numerical-simulation/" target="_blank">#numericalSimulation</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/shock-wave/" target="_blank">#shockWave</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/turbulence/" target="_blank">#turbulence</a></p>
Nicole Sharp<p><strong>Building a Better Fog Harp</strong></p><p>On arid coastlines, fog rolling in can serve as an important water source. Today’s fog collectors often use tight mesh nets. The narrow holes help catch tiny water particles, but they also clog easily. A few years ago, researchers suggested an alternative design — a fog harp inspired by coastal redwoods — that used closely spaced vertical wires to capture water vapor. At small scales, this technique worked well, but once scaled up to a meter-long fog harp, the strings would stick together once wet — much the way wet hairs cling to one another. </p><p>The group has <a href="https://doi.org/10.1039/D5TA02686E" rel="nofollow noopener" target="_blank">iterated on</a> their design with a new hybrid that maintains the fog harp’s close vertical spacing but adds occasional cross-wires to stabilize. Laboratory tests are promising, with the new hybrid fog harp collecting water with 2 – 8 times the efficiency of either a conventional mesh or their original fog harp. The team notes that even higher efficiencies are possible with electrification. (Image credit: A. Parrish; research credit: <a href="https://doi.org/10.1039/D5TA02686E" rel="nofollow noopener" target="_blank">J. Kaindu et al.</a>; via <a href="https://arstechnica.com/science/2025/06/these-va-tech-scientists-are-building-a-better-fog-harp/?__readwiseLocation=" rel="nofollow noopener" target="_blank">Ars Technica</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/condensation/" target="_blank">#condensation</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/elastocapillarity/" target="_blank">#elastocapillarity</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fog/" target="_blank">#fog</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fog-collection/" target="_blank">#fogCollection</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/surface-tension/" target="_blank">#surfaceTension</a></p>
Planetary Ecologist<p>Hydraulic diameter (Hydrology 💧)</p><p>The hydraulic diameter, DH, is a commonly used term when handling flow in non-circular tubes and channels. Using this term, one can calculate many things in the same way as for a round tube. When the cross-section is uniform along the tube or channel length, it is defined as D H = 4 A P, {\displaystyle D_{\text{H}}={\frac {4A}{P}},}...</p><p><a href="https://en.wikipedia.org/wiki/Hydraulic_diameter" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Hydrauli</span><span class="invisible">c_diameter</span></a></p><p><a href="https://mastodon.social/tags/HydraulicDiameter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HydraulicDiameter</span></a> <a href="https://mastodon.social/tags/Radii" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Radii</span></a> <a href="https://mastodon.social/tags/Hydrology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Hydrology</span></a> <a href="https://mastodon.social/tags/Hydraulics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Hydraulics</span></a> <a href="https://mastodon.social/tags/HeatTransfer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HeatTransfer</span></a> <a href="https://mastodon.social/tags/FluidDynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FluidDynamics</span></a></p>
Nicole Sharp<p><strong>Flying Foxes</strong></p><p>A sweltering day in India brought out the local giant fruit bats (also called <a href="https://en.wikipedia.org/wiki/Indian_flying_fox" rel="nofollow noopener" target="_blank">Indian flying foxes</a>) to keep cool in the river. Normally nocturnal, they made a rare daytime appearance to beat the heat. Wildlife photographer Hardik Shelat was lucky enough to catch these awesome images of the bats in flight. True to their name, the animals have wingspans ranging from 1.2 to 1.5 meters, which should give them some impressive lift, even when gliding down near the water. (Image credit: <a href="https://www.instagram.com/hardik_shelat_photography/?hl=en" rel="nofollow noopener" target="_blank">H. Shelat</a>; via <a href="https://www.thisiscolossal.com/2025/06/hardik-shelat-flying-foxes/?__readwiseLocation=" rel="nofollow noopener" target="_blank">Colossal</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/bats/" target="_blank">#bats</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flapping-flight/" target="_blank">#flappingFlight</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/gliding/" target="_blank">#gliding</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Soh Kam Yung<p>"We discovered that the flickering snake tongue generates two pairs of small, swirling masses of air, or vortices, that act like tiny fans, pulling odors in from each side and jetting them directly into the path of each tongue tip."</p><p><a href="https://theconversation.com/smelling-in-stereo-the-real-reason-snakes-have-flicking-forked-tongues-142363" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">theconversation.com/smelling-i</span><span class="invisible">n-stereo-the-real-reason-snakes-have-flicking-forked-tongues-142363</span></a></p><p><a href="https://mstdn.io/tags/Snakes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Snakes</span></a> <a href="https://mstdn.io/tags/Biology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Biology</span></a> <a href="https://mstdn.io/tags/Smelling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Smelling</span></a> <a href="https://mstdn.io/tags/Nature" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Nature</span></a> <a href="https://mstdn.io/tags/Tongues" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Tongues</span></a> <a href="https://mstdn.io/tags/FluidDynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FluidDynamics</span></a></p>
Nicole Sharp<p><strong>Martian Streaks Are Dry</strong></p><p>Dark lines appearing on Martian slopes have triggered theories of flowing water or brine on the planet’s surface. But a <a href="https://doi.org/10.1038/s41467-025-59395-w" rel="nofollow noopener" target="_blank">new study suggests</a> that these features are, instead, dry. To explore these streaks, the team assembled a global database of sightings and correlated their map with other known quantities, like temperature, wind speed, and rock slides. By connecting the data across thousands of streaks, they could build statistics about what variables correlated with the streaks’ appearance.</p><p>What they found was that streaks didn’t appear in places connected to liquid water or even frost. Instead, the streaks appeared in spots with high wind speeds and heavy dust accumulation. The team included that, rather than being moist areas, the streaks are dry and form when dust slides down the slope, perhaps triggered by high winds or passing dust devils.</p><p>Although showing that the streaks aren’t associated with water may seem disappointing, it may mean that NASA will be able to explore them sooner. Right now, NASA avoids sending rovers anywhere near water, out of concern that Earth microbes still on the rover could contaminate the Martian environment. (Image credit: NASA; research credit: <a href="https://doi.org/10.1038/s41467-025-59395-w" rel="nofollow noopener" target="_blank">V. Bickel and A. Valantinas</a>; via <a href="https://gizmodo.com/bizarre-streaks-on-mars-arent-caused-by-water-after-all-study-suggests-2000605177?__readwiseLocation=" rel="nofollow noopener" target="_blank">Gizmodo</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/mars/" target="_blank">#Mars</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/planetary-science/" target="_blank">#planetaryScience</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Listening for Pollinators</strong></p><p>Can plants recognize the sound of their pollinators? That’s the question behind this <a href="https://www.eurekalert.org/news-releases/1083951" rel="nofollow noopener" target="_blank">recently presented</a> acoustic research. As bees and other pollinators hover, land, and take-off, their bodies buzz in distinctive ways. Researchers recorded these subtle sounds from a <em>Rhodanthidium sticticum&nbsp;</em>bee and played them back to snapdragons, which rely on that insect. They found that the snapdragons responded with an increase in sugar and nectar volume; the plants even altered their gene expression governing sugar transport and nectar production. The researchers suspect that the plants evolved this strategy to attract their most efficient pollinators and thereby increase their own reproductive success. (Image credit: <a href="https://unsplash.com/photos/a-vase-filled-with-purple-flowers-on-top-of-a-table-bA5jzbGtEWw" rel="nofollow noopener" target="_blank">E. Wilcox</a>; research credit: <a href="https://www.eurekalert.org/news-releases/1083951" rel="nofollow noopener" target="_blank">F. Barbero et al.</a>; via <a href="https://www.popsci.com/environment/plants-hear-pollinators/?__readwiseLocation=" rel="nofollow noopener" target="_blank">PopSci</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/acoustics/" target="_blank">#acoustics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/insects/" target="_blank">#insects</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/plants/" target="_blank">#plants</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/pollination/" target="_blank">#pollination</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
N-gated Hacker News<p>🤓 Oh joy, another thrilling episode of "Let's Pretend We Understand Hilbert and Boltzmann" — because fluid dynamics and kinetic theory are obviously everyone's favorite cocktail party topics. 🍸🔬 Good luck keeping your eyes open through this math-induced coma! 😴💤<br><a href="https://arxiv.org/abs/2503.01800" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2503.01800</span><span class="invisible"></span></a> <a href="https://mastodon.social/tags/HackerNews" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HackerNews</span></a> <a href="https://mastodon.social/tags/FluidDynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FluidDynamics</span></a> <a href="https://mastodon.social/tags/KineticTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>KineticTheory</span></a> <a href="https://mastodon.social/tags/MathHumor" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathHumor</span></a> <a href="https://mastodon.social/tags/ScienceComedy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ScienceComedy</span></a> <a href="https://mastodon.social/tags/HackerNews" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HackerNews</span></a> <a href="https://mastodon.social/tags/ngated" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ngated</span></a></p>
Nicole Sharp<p><strong>Rolling Down Soft Surfaces</strong></p><p>Place a rigid ball on a hard vertical surface, and it will free fall. Stick a liquid drop there, and it will slide down. But <a href="https://doi.org/10.1039/D4SM01490A" rel="nofollow noopener" target="_blank">researchers discovered</a> that with a soft sphere and a soft surface, it’s possible to roll down a vertical wall. The effect requires just the right level of squishiness for both the wall and sphere, but when conditions are right, the 1-millimeter radius sphere rolls (with a little slipping) down the wall. </p><p>Rolling requires torque, something that’s usually lacking on a vertical surface. But the team found that their soft spheres got the torque needed to roll from their asymmetric contact with the surface. More of the sphere contacted above its centerline than below it. The researchers compared the way the sphere contacted the surface to a crack opening (at the back of the sphere) and a crack closing (at the front of the sphere). That asymmetry creates just enough torque to roll the sphere slowly. The team hopes their discovery opens up new possibilities for soft robots to climb and descend vertical surfaces. (Image and research credit: <a href="https://doi.org/10.1039/D4SM01490A" rel="nofollow noopener" target="_blank">S. Mitra et al.</a>; via <a href="https://gizmodo.com/cool-physics-feat-makes-a-sphere-roll-down-a-vertical-wall-2000610612?__readwiseLocation=" rel="nofollow noopener" target="_blank">Gizmodo</a>)</p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/adhesion/" target="_blank">#adhesion</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/slip/" target="_blank">#slip</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/soft-matter/" target="_blank">#softMatter</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/solid-mechanics/" target="_blank">#solidMechanics</a></p>
Nicole Sharp<p><strong>Seeing the Sun’s South Pole For the First Time</strong></p><p>The ESA-led Solar Orbiter recently used a Venus flyby to lift itself out of the <a href="https://en.wikipedia.org/wiki/Ecliptic" rel="nofollow noopener" target="_blank">ecliptic</a> — the equatorial plane of the Sun where Earth sits. This maneuver offers us the first-ever glimpse of the Sun’s south pole, a region that’s not visible from the ecliptic plane. A close-up view of plasma rising off the pole is shown above, and the video below has even more. </p><p>Solar Orbiter will get even better views of the Sun’s poles in the coming months, perfect for watching what goes on as the Sun’s 11-year-solar-cycle approaches its maximum. During this time, the Sun’s magnetic poles will flip their polarity; already Solar Orbiter’s instruments show that the south pole contains pockets of both positive and negative magnetic polarity — a messy state that’s likely a precursor to the big flip. (Image and video credit: <a href="https://www.esa.int/Science_Exploration/Space_Science/Solar_Orbiter/Solar_Orbiter_gets_world-first_views_of_the_Sun_s_poles" rel="nofollow noopener" target="_blank">ESA &amp; NASA/Solar Orbiter/EUI Team, D. Berghmans (ROB) &amp; ESA/Royal Observatory of Belgium</a>; via <a href="https://gizmodo.com/solar-orbiter-captures-first-clear-views-of-suns-south-pole-and-its-a-hot-mess-2000614511?__readwiseLocation=" rel="nofollow noopener" target="_blank">Gizmodo</a>)</p><p><a href="https://www.youtube.com/watch?v=TU4DcDgaMM0" rel="nofollow noopener" target="_blank">https://www.youtube.com/watch?v=TU4DcDgaMM0</a></p><p><a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/magnetohydrodynamics/" target="_blank">#magnetohydrodynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/plasma/" target="_blank">#plasma</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/solar-dynamics/" target="_blank">#solarDynamics</a> <a rel="nofollow noopener" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/sun/" target="_blank">#sun</a></p>
HoldMyType<p>Vortex ring - Wikipedia<br>"discontinuity introduced by the Dirac delta function prevents the computation of the speed and the kinetic energy of a circular vortex line. It is however possible to estimate these quantities for a vortex ring having a finite small thicknes"<br><a href="https://mathstodon.xyz/tags/fluiddynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fluiddynamics</span></a> <a href="https://en.wikipedia.org/wiki/Vortex_ring#:~:text=discontinuity%20introduced%20by%20the%20Dirac%20delta%20function%20prevents%20the%20computation%20of%20the%20speed%20and%20the%20kinetic%20energy%20of%20a%20circular%20vortex%20line.%20It%20is%20however%20possible%20to%20estimate%20these%20quantities%20for%20a%20vortex%20ring%20having%20a%20finite%20small%20thickness" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Vortex_r</span><span class="invisible">ing#:~:text=discontinuity%20introduced%20by%20the%20Dirac%20delta%20function%20prevents%20the%20computation%20of%20the%20speed%20and%20the%20kinetic%20energy%20of%20a%20circular%20vortex%20line.%20It%20is%20however%20possible%20to%20estimate%20these%20quantities%20for%20a%20vortex%20ring%20having%20a%20finite%20small%20thickness</span></a></p>