veganism.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
Veganism Social is a welcoming space on the internet for vegans to connect and engage with the broader decentralized social media community.

Administered by:

Server stats:

293
active users

#vectorsearch

0 posts0 participants0 posts today
Sarah Lea<p>LLMs don’t know your PDF.<br>They don’t know your company wiki either. Or your research papers.</p><p>What they can do with RAG is look through your documents in the background and answer using what they find.</p><p>But how does that actually work? Here’s the basic idea behind RAG:<br>:blobcoffee: Chunking: The document is split into small, overlapping parts so the LLM can handle them. This keeps structure and context.<br>:blobcoffee: Embeddings &amp; Search: Each part is turned into a vector (a numerical representation of meaning). Your question is also turned into a vector, and the system compares them to find the best matches.<br>:blobcoffee: Retriever + LLM: The top matches are sent to the LLM, which uses them to generate an answer based on that context.</p><p><a href="https://techhub.social/tags/llm" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>llm</span></a> <a href="https://techhub.social/tags/largelanguagemodel" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>largelanguagemodel</span></a> <a href="https://techhub.social/tags/ai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ai</span></a> <a href="https://techhub.social/tags/ki" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ki</span></a> <a href="https://techhub.social/tags/rag" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rag</span></a> <a href="https://techhub.social/tags/tech" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tech</span></a> <a href="https://techhub.social/tags/technology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>technology</span></a> <a href="https://techhub.social/tags/vector" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>vector</span></a> <a href="https://techhub.social/tags/datascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascience</span></a> <a href="https://techhub.social/tags/vectorsearch" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>vectorsearch</span></a> <a href="https://techhub.social/tags/vector" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>vector</span></a> <a href="https://techhub.social/tags/machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machinelearning</span></a></p>
Pragmatic Bookshelf 📚<p>In Berlin at <a href="https://techhub.social/tags/WWC25" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>WWC25</span></a> ? Catch our ✨ newest✨ Pragprog author - Ben Greenberg <span class="h-card" translate="no"><a href="https://fosstodon.org/@hummusonrails" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>hummusonrails</span></a></span><br>Learn how GenAI and Vector Search can help users find what they are looking for - even when they don't know!<br>Fri 2:20 pm - Stage 7 </p><p>Ben's Book - out in Beta this week!<br><a href="https://pragprog.com/titles/bgvector?utm_source=m" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">pragprog.com/titles/bgvector?u</span><span class="invisible">tm_source=m</span></a><br> <a href="https://techhub.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://techhub.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> <a href="https://techhub.social/tags/VectorSearch" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>VectorSearch</span></a> <br>WeAreDevs</p>
The Linux Foundation<p>🚀 Scale vector search without breaking the bank! @OpenSearchProject introduces disk-based vector search, combining efficient quantization with secondary storage to reduce RAM usage while maintaining accuracy.</p><p>Read more: <a href="https://opensearch.org/blog/Reduce-Cost-with-Disk-based-Vector-Search/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">opensearch.org/blog/Reduce-Cos</span><span class="invisible">t-with-Disk-based-Vector-Search/</span></a><br><a href="https://social.lfx.dev/tags/OpenSearch" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenSearch</span></a> <a href="https://social.lfx.dev/tags/VectorSearch" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>VectorSearch</span></a> <a href="https://social.lfx.dev/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a></p>