veganism.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
Veganism Social is a welcoming space on the internet for vegans to connect and engage with the broader decentralized social media community.

Administered by:

Server stats:

230
active users

#geometry

10 posts7 participants0 posts today
Dan Drake 🦆<p>Crows can do geometry!</p><p><a href="https://www.npr.org/2025/04/12/nx-s1-5359438/a-crows-math-skills-include-geometry" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">npr.org/2025/04/12/nx-s1-53594</span><span class="invisible">38/a-crows-math-skills-include-geometry</span></a></p><p>The particular test involved crows identifying a shape that was different from some others -- very reminiscent of the "Which One Doesn't Belong?" book from Talking Math With Your Kids:</p><p><a href="https://talkingmathwithkids.com/wodb-about/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">talkingmathwithkids.com/wodb-a</span><span class="invisible">bout/</span></a></p><p>(Last time I taught linear algebra, I did an assignment like that -- students had to come up with four matrices, and for each one of them, come up with some linear-algebraic way in which that matrix didn't belong with the other four. It was fun.)</p><p><a href="https://mathstodon.xyz/tags/tmwyk" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tmwyk</span></a> <a href="https://mathstodon.xyz/tags/crows" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>crows</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a></p>
Alexis Pierre<p>Divide/mirror/fill</p><p><a href="https://mastodon.social/tags/generativeart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>generativeart</span></a> <a href="https://mastodon.social/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mastodon.social/tags/pattern" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pattern</span></a></p>
n-gons<p>Hexagonal tiling with stars, squares and assymmetric kites for <a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a></p><p><a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/Geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Geometry</span></a> <a href="https://mathstodon.xyz/tags/Tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Tiling</span></a> <a href="https://mathstodon.xyz/tags/Hexagon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Hexagon</span></a></p>
foldworks<p>Floor tiles, Imperial Citadel of Thăng Long, Hanoi, Vietnam<br><a href="https://mathstodon.xyz/tags/Tiling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Tiling</span></a> <a href="https://mathstodon.xyz/tags/TilingTuesday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TilingTuesday</span></a> <a href="https://mathstodon.xyz/tags/Pattern" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Pattern</span></a> <a href="https://mathstodon.xyz/tags/Geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Geometry</span></a> <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/MathsArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathsArt</span></a> <a href="https://mathstodon.xyz/tags/photography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>photography</span></a></p>
ƧƿѦςɛ♏ѦਹѤʞ<p>The Thompson Problem.<br><a href="https://www.youtube.com/watch?v=dNTnk1VFoJY" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">youtube.com/watch?v=dNTnk1VFoJY</span><span class="invisible"></span></a><br><a href="https://mastodon.social/tags/GolfBalls" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GolfBalls</span></a> <a href="https://mastodon.social/tags/polyhedra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polyhedra</span></a> <a href="https://mastodon.social/tags/Goldberg" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Goldberg</span></a> <br><a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mastodon.social/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mastodon.social/tags/electrons" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>electrons</span></a></p>
Brokk O. LeeAufteilung | Fuji XT5 | XF23mmF1.4<br> <br> <a href="https://pixelfed.social/discover/tags/Fotografie?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#Fotografie</a> <a href="https://pixelfed.social/discover/tags/Photography?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#Photography</a> <a href="https://pixelfed.social/discover/tags/FujiX?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#FujiX</a> <a href="https://pixelfed.social/discover/tags/BrokkoGrafie?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#BrokkoGrafie</a> <a href="https://pixelfed.social/discover/tags/StreetPhotography?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#StreetPhotography</a> <a href="https://pixelfed.social/discover/tags/CityScape?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#CityScape</a> <a href="https://pixelfed.social/discover/tags/UrbanPhotography?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#UrbanPhotography</a> <a href="https://pixelfed.social/discover/tags/Architecture?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#Architecture</a> <a href="https://pixelfed.social/discover/tags/Geometry?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#Geometry</a>
foldworks<p>I tried to model these origami as transformation between cube and octahedron in Geogebra, but ended up with this instead<br><a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/loop" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>loop</span></a> <a href="https://mathstodon.xyz/tags/geogebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geogebra</span></a> <a href="https://mathstodon.xyz/tags/tetrahedron" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tetrahedron</span></a> <a href="https://mathstodon.xyz/tags/3d" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3d</span></a></p>
foldworks<p>Two modular origami cubes made from 1:√2 rectangles and squares (Canoe Unit 90° by me).<br><a href="https://mathstodon.xyz/tags/origami" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>origami</span></a> @origami <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/cube" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cube</span></a> <a href="https://mathstodon.xyz/tags/ModularOrigami" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ModularOrigami</span></a> <a href="https://mathstodon.xyz/tags/papercraft" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>papercraft</span></a> <a href="https://mathstodon.xyz/tags/craft" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>craft</span></a></p>
foldworks<p>Three modular origami octahedra made from three different kinds of rectangles (Canoe Unit 60° by me).<br>From left to right, the rectangles are 1:√2, square and 2:√3.</p><p><a href="https://mathstodon.xyz/tags/origami" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>origami</span></a> @origami <a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/octahedron" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>octahedron</span></a> <a href="https://mathstodon.xyz/tags/ModularOrigami" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ModularOrigami</span></a> <a href="https://mathstodon.xyz/tags/papercraft" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>papercraft</span></a> <a href="https://mathstodon.xyz/tags/craft" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>craft</span></a></p>
Brandipo<p>A New Morning In The City</p><p><a href="https://mastodon.social/tags/Photography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Photography</span></a> <a href="https://mastodon.social/tags/Outdoors" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Outdoors</span></a> <a href="https://mastodon.social/tags/Architecture" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Architecture</span></a> <a href="https://mastodon.social/tags/City" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>City</span></a> <a href="https://mastodon.social/tags/Modern" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Modern</span></a> <a href="https://mastodon.social/tags/BuildingExterior" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BuildingExterior</span></a> <a href="https://mastodon.social/tags/Skyscraper" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Skyscraper</span></a> <a href="https://mastodon.social/tags/Reflection" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Reflection</span></a> <a href="https://mastodon.social/tags/BuiltStructure" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BuiltStructure</span></a> <a href="https://mastodon.social/tags/Sky" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Sky</span></a> <a href="https://mastodon.social/tags/Glass" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Glass</span></a> <a href="https://mastodon.social/tags/Building" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Building</span></a> <a href="https://mastodon.social/tags/Geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Geometry</span></a> <a href="https://mastodon.social/tags/streetphotography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>streetphotography</span></a> <a href="https://mastodon.social/tags/ArchitecturalPhotography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ArchitecturalPhotography</span></a></p>
SusiPlaces of geometry.<br> <br> <br> <a href="https://pixelfed.de/discover/tags/fensterfreitag?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#fensterfreitag</a> <a href="https://pixelfed.de/discover/tags/windowsonfriday?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#windowsonfriday</a> <a href="https://pixelfed.de/discover/tags/windows?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#windows</a> <a href="https://pixelfed.de/discover/tags/building?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#building</a> <a href="https://pixelfed.de/discover/tags/architecture?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#architecture</a> <a href="https://pixelfed.de/discover/tags/architecturephotography?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#architecturephotography</a> <a href="https://pixelfed.de/discover/tags/abstractinarchitecture?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#abstractinarchitecture</a> <a href="https://pixelfed.de/discover/tags/geometry?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#geometry</a> <a href="https://pixelfed.de/discover/tags/bnw?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#bnw</a> <a href="https://pixelfed.de/discover/tags/bnwphotography?src=hash" class="u-url hashtag" rel="nofollow noopener" target="_blank">#bnwphotography</a>
:blobfoxcheck: Ned Hairston<p>:blobcatwarning: When playing D&amp;D for the first time, keep in mind that you are stepping into a magical world of infinite possibility, where magic is as real as the immutable law that the hypotenuse of a right triangle with equal side lengths is equal to the length of either side.</p><p><a href="https://tech.lgbt/tags/DnD" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DnD</span></a> <a href="https://tech.lgbt/tags/TTRPG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TTRPG</span></a> <a href="https://tech.lgbt/tags/Fantasy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Fantasy</span></a> <a href="https://tech.lgbt/tags/Geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Geometry</span></a> <a href="https://tech.lgbt/tags/Math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Math</span></a></p>
PabloMtnezCalleja<p><a href="https://mastodon.social/tags/AgainstLiberticidalTyranny" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AgainstLiberticidalTyranny</span></a> <a href="https://mastodon.social/tags/HandsOff" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HandsOff</span></a> <a href="https://mastodon.social/tags/photography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>photography</span></a> <a href="https://mastodon.social/tags/art" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>art</span></a> <a href="https://mastodon.social/tags/visualart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>visualart</span></a> <a href="https://mastodon.social/tags/fotografia" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fotografia</span></a> <a href="https://mastodon.social/tags/arte" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arte</span></a> <a href="https://mastodon.social/tags/photographie" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>photographie</span></a> <a href="https://mastodon.social/tags/fotografie" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fotografie</span></a> <a href="https://mastodon.social/tags/photooftheday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>photooftheday</span></a> <a href="https://mastodon.social/tags/fotografiaabstracta" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fotografiaabstracta</span></a> <a href="https://mastodon.social/tags/abstraktekunst" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>abstraktekunst</span></a> <a href="https://mastodon.social/tags/AbstractArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AbstractArt</span></a> <a href="https://mastodon.social/tags/abstractphotography" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>abstractphotography</span></a> <a href="https://mastodon.social/tags/Colors" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Colors</span></a> <a href="https://mastodon.social/tags/colorfuldays" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>colorfuldays</span></a> <a href="https://mastodon.social/tags/colorful" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>colorful</span></a> <a href="https://mastodon.social/tags/Luz" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Luz</span></a> <a href="https://mastodon.social/tags/Light" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Light</span></a> <a href="https://mastodon.social/tags/Licht" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Licht</span></a> <a href="https://mastodon.social/tags/HandsOffHarvard" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HandsOffHarvard</span></a> <a href="https://mastodon.social/tags/DefendersOfDemocracy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DefendersOfDemocracy</span></a> <a href="https://mastodon.social/tags/geometria" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometria</span></a> <a href="https://mastodon.social/tags/geometrie" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometrie</span></a> <a href="https://mastodon.social/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mastodon.social/tags/Duchamp" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Duchamp</span></a> <a href="https://mastodon.social/tags/davinci" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>davinci</span></a> <br><a href="https://pablomartinezcalleja.blogspot.com/2025/04/springabfluss-leonardo-mirando-la-obra.html?m=1" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">pablomartinezcalleja.blogspot.</span><span class="invisible">com/2025/04/springabfluss-leonardo-mirando-la-obra.html?m=1</span></a></p>
foldworks<p><span class="h-card" translate="no"><a href="https://mathstodon.xyz/@mrdk" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>mrdk</span></a></span> <span class="h-card" translate="no"><a href="https://booping.synth.download/@unnick" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>unnick</span></a></span> Maybe looks better with the cube visible?</p><p><a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/loop" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>loop</span></a> <a href="https://mathstodon.xyz/tags/geogebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geogebra</span></a> <a href="https://mathstodon.xyz/tags/cube" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cube</span></a> <a href="https://mathstodon.xyz/tags/tetrahedron" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tetrahedron</span></a> <a href="https://mathstodon.xyz/tags/3d" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3d</span></a></p>
foldworks<p><span class="h-card" translate="no"><a href="https://mathstodon.xyz/@mrdk" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>mrdk</span></a></span> <span class="h-card" translate="no"><a href="https://booping.synth.download/@unnick" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>unnick</span></a></span> I'm kind of surprised and not surprised about how the tetrahedron turned out. <br><a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/loop" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>loop</span></a> <a href="https://mathstodon.xyz/tags/geogebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geogebra</span></a> <a href="https://mathstodon.xyz/tags/tetrahedron" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tetrahedron</span></a> <a href="https://mathstodon.xyz/tags/3d" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3d</span></a></p>
foldworks<p><span class="h-card" translate="no"><a href="https://mathstodon.xyz/@mrdk" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>mrdk</span></a></span> <span class="h-card" translate="no"><a href="https://booping.synth.download/@unnick" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>unnick</span></a></span> And here’s the rhombic triacontahedron for the dodecahedron/icosahedron (again without scaling the bars to have constant length).<br><a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/loop" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>loop</span></a> <a href="https://mathstodon.xyz/tags/geogebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geogebra</span></a> <a href="https://mathstodon.xyz/tags/dodecahedron" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dodecahedron</span></a> <a href="https://mathstodon.xyz/tags/icosahedron" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>icosahedron</span></a> <a href="https://mathstodon.xyz/tags/3d" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3d</span></a></p>
foldworks<p><span class="h-card" translate="no"><a href="https://mathstodon.xyz/@mrdk" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>mrdk</span></a></span> <span class="h-card" translate="no"><a href="https://booping.synth.download/@unnick" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>unnick</span></a></span> This version shows how the cube/octahedron works using a rhombic dodecahedron (without scaling the bars to have constant length).<br><a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/loop" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>loop</span></a> <a href="https://mathstodon.xyz/tags/geogebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geogebra</span></a> <a href="https://mathstodon.xyz/tags/cube" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cube</span></a> <a href="https://mathstodon.xyz/tags/octahedron" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>octahedron</span></a> <a href="https://mathstodon.xyz/tags/3d" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3d</span></a></p>
foldworks<p><span class="h-card" translate="no"><a href="https://mathstodon.xyz/@mrdk" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>mrdk</span></a></span> <span class="h-card" translate="no"><a href="https://booping.synth.download/@unnick" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>unnick</span></a></span> <br>I'm not sure that these are related to the Jitterbug transformation. </p><p>This is my recreation of unnick's original cube/octahedron loop. I used the rhombic dodecahedron and rhombic triacontahedron for this and the previous loop. They remind me of tensegrity structures.</p><p>BTW, I made a couple of origami versions of the Jitterbug transformation many years ago. This one <a href="https://foldworks.net/wp-content/uploads/2018/06/jitterbug.pdf" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">foldworks.net/wp-content/uploa</span><span class="invisible">ds/2018/06/jitterbug.pdf</span></a> works better than the first version <a href="https://britishorigami.org/academic/davidpetty/origamiemporium/lam_jitterbug.htm" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">britishorigami.org/academic/da</span><span class="invisible">vidpetty/origamiemporium/lam_jitterbug.htm</span></a></p><p><a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/loop" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>loop</span></a> <a href="https://mathstodon.xyz/tags/geogebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geogebra</span></a> <a href="https://mathstodon.xyz/tags/cube" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cube</span></a> <a href="https://mathstodon.xyz/tags/octahedron" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>octahedron</span></a> <a href="https://mathstodon.xyz/tags/3d" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3d</span></a> <a href="https://mathstodon.xyz/tags/Jitterbug" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Jitterbug</span></a> <a href="https://mathstodon.xyz/tags/origami" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>origami</span></a></p>
foldworks<p>I couldn’t resist making this in Geogebra: morphing between a regular icosahedron and a regular dodecahedron.</p><p>h/t <span class="h-card" translate="no"><a href="https://booping.synth.download/@unnick" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>unnick</span></a></span> <a href="https://mathstodon.xyz/@unnick@booping.synth.download/114350750053349050" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">mathstodon.xyz/@unnick@booping</span><span class="invisible">.synth.download/114350750053349050</span></a></p><p><a href="https://mathstodon.xyz/tags/MathArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MathArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mathstodon.xyz/tags/animation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>animation</span></a> <a href="https://mathstodon.xyz/tags/loop" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>loop</span></a> <a href="https://mathstodon.xyz/tags/geogebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geogebra</span></a> <a href="https://mathstodon.xyz/tags/icosahedron" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>icosahedron</span></a> <a href="https://mathstodon.xyz/tags/dodecahedron" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dodecahedron</span></a> <a href="https://mathstodon.xyz/tags/polyhedra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polyhedra</span></a> <a href="https://mathstodon.xyz/tags/3d" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3d</span></a></p>
ƧƿѦςɛ♏ѦਹѤʞ<p><a href="https://mastodon.social/tags/maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maths</span></a> <a href="https://mastodon.social/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a> <a href="https://mastodon.social/tags/units" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>units</span></a> <a href="https://mastodon.social/tags/Planck" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Planck</span></a> <a href="https://mastodon.social/tags/physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>physics</span></a></p>