veganism.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
Veganism Social is a welcoming space on the internet for vegans to connect and engage with the broader decentralized social media community.

Administered by:

Server stats:

272
active users

#statstab

4 posts4 participants0 posts today
Dr Mircea Zloteanu ☀️ 🌊🌴<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statstab</span></a> #406 The t-test tool</p><p>Thoughts: "Stephen Senn describes the t-test, whose centenary he has celebrated in the previous article." <span class="h-card" translate="no"><a href="https://mastodonapp.uk/@StephenSenn" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>StephenSenn</span></a></span> </p><p><a href="https://mastodon.social/tags/ttest" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ttest</span></a> <a href="https://mastodon.social/tags/statistics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statistics</span></a> <a href="https://mastodon.social/tags/history" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>history</span></a> <a href="https://mastodon.social/tags/studentsttest" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>studentsttest</span></a> <a href="https://mastodon.social/tags/Gosset" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Gosset</span></a></p><p><a href="https://rss.onlinelibrary.wiley.com/doi/full/10.1111/j.1740-9713.2008.00280.x" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">rss.onlinelibrary.wiley.com/do</span><span class="invisible">i/full/10.1111/j.1740-9713.2008.00280.x</span></a></p>
Dr Mircea Zloteanu ☀️ 🌊🌴<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statstab</span></a> #405 Best Practices for Estimating, Interpreting, and<br>Presenting Nonlinear Interaction Effects</p><p>Thoughts: Guidance on nonlinear interactions, reporting (probabilities) and visualisations.</p><p><a href="https://mastodon.social/tags/probit" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>probit</span></a> <a href="https://mastodon.social/tags/logit" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>logit</span></a> <a href="https://mastodon.social/tags/logisticregression" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>logisticregression</span></a> <a href="https://mastodon.social/tags/nonlinear" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>nonlinear</span></a> <a href="https://mastodon.social/tags/guide" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>guide</span></a></p><p><a href="https://sociologicalscience.com/download/vol-6/february/SocSci_v6_81to117.pdf" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">sociologicalscience.com/downlo</span><span class="invisible">ad/vol-6/february/SocSci_v6_81to117.pdf</span></a></p>
Dr Mircea Zloteanu ☀️ 🌊🌴<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statstab</span></a> #404 {latent2likert} simulate Likert response variables from hypothetical latent variables</p><p>Thoughts: Most of psych is Likert type data. This R pkg can help simulate effects and check model fit.</p><p><a href="https://mastodon.social/tags/likert" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>likert</span></a> <a href="https://mastodon.social/tags/ordinal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ordinal</span></a> <a href="https://mastodon.social/tags/r" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>r</span></a> <a href="https://mastodon.social/tags/latent" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>latent</span></a> <a href="https://mastodon.social/tags/simulation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>simulation</span></a> <a href="https://mastodon.social/tags/data" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>data</span></a></p><p><a href="https://latent2likert.lalovic.io/articles/using_latent2likert" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">latent2likert.lalovic.io/artic</span><span class="invisible">les/using_latent2likert</span></a></p>
Dr Mircea Zloteanu ☀️ 🌊🌴<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statstab</span></a> #403 {CarefullyCausal} Provides estimates, assumptions and diagnostics for fixed-exposure causal analyses</p><p>Thoughts: Really nice package for beginners in causal inference and observational studies.</p><p><a href="https://mastodon.social/tags/causalinference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>causalinference</span></a> <a href="https://mastodon.social/tags/observational" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>observational</span></a> <a href="https://mastodon.social/tags/r" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>r</span></a> <a href="https://mastodon.social/tags/teaching" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>teaching</span></a></p><p><a href="https://github.com/mauricekorf/CarefullyCausal" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">github.com/mauricekorf/Careful</span><span class="invisible">lyCausal</span></a></p>
Dr Mircea Zloteanu ☀️ 🌊🌴<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statstab</span></a> #402 On Bayes factors for hypothesis tests {emBayes Factor}</p><p>Thoughts: On bsky there were renewed debates about BFs. This paper provides "better" priors (mixture t centred on the ES). Also some p-value BFs</p><p><a href="https://mastodon.social/tags/bayesian" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bayesian</span></a> <a href="https://mastodon.social/tags/bayesfactor" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bayesfactor</span></a> <a href="https://mastodon.social/tags/priors" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>priors</span></a> <a href="https://mastodon.social/tags/cohend" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cohend</span></a></p><p><a href="https://link.springer.com/article/10.3758/s13423-024-02612-2" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">link.springer.com/article/10.3</span><span class="invisible">758/s13423-024-02612-2</span></a></p>
Dr Mircea Zloteanu ☀️ 🌊🌴<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statstab</span></a> #401 Common issues, conundrums, and other things that might come up when implementing mixed models</p><p>Thoughts: GLMMs are cool, but come with their own quirks.</p><p><a href="https://mastodon.social/tags/glmm" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>glmm</span></a> <a href="https://mastodon.social/tags/lmer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>lmer</span></a> <a href="https://mastodon.social/tags/brms" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>brms</span></a> <a href="https://mastodon.social/tags/mixedeffects" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mixedeffects</span></a> <a href="https://mastodon.social/tags/hierarchicalmodels" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hierarchicalmodels</span></a> <a href="https://mastodon.social/tags/r" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>r</span></a></p><p><a href="https://m-clark.github.io/mixed-models-with-R/issues.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">m-clark.github.io/mixed-models</span><span class="invisible">-with-R/issues.html</span></a></p>
Dr Mircea Zloteanu ☀️ 🌊🌴<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statstab</span></a> #400 (!) Precise Answers to Vague Questions: Issues With Interactions</p><p>Thoughts: For the 400th post, I'll reshare an important article for the causal inference and interactions.</p><p><a href="https://mastodon.social/tags/interactions" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>interactions</span></a> <a href="https://mastodon.social/tags/theory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theory</span></a> <a href="https://mastodon.social/tags/methodology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>methodology</span></a> <a href="https://mastodon.social/tags/psychology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>psychology</span></a> <a href="https://mastodon.social/tags/researchmethods" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>researchmethods</span></a></p><p><a href="https://journals.sagepub.com/doi/10.1177/25152459211007368" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">journals.sagepub.com/doi/10.11</span><span class="invisible">77/25152459211007368</span></a></p>
Dr Mircea Zloteanu ☀️ 🌊🌴<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statstab</span></a> #399 An Illustrated Guide to TMLE, Part II: The Algorithm</p><p>Thoughts: Targeted Maximum Likelihood Estimation. Not sure what this is or if I'll ever use it, but the tutorial seems straightforward.</p><p><a href="https://mastodon.social/tags/guide" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>guide</span></a> <a href="https://mastodon.social/tags/tutorial" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tutorial</span></a> <a href="https://mastodon.social/tags/TMLE" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TMLE</span></a> <a href="https://mastodon.social/tags/binary" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>binary</span></a> <a href="https://mastodon.social/tags/ML" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ML</span></a></p><p><a href="https://www.khstats.com/blog/tmle/tutorial-pt2" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">khstats.com/blog/tmle/tutorial</span><span class="invisible">-pt2</span></a></p>
Dr Mircea Zloteanu ☀️ 🌊🌴<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statstab</span></a> #398 Eta^2 for bayesian models {effectsize}</p><p>Thoughts: Great resource, but scroll to "Eta Squared from Posterior Predictive Distribution"</p><p><a href="https://mastodon.social/tags/effectsize" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>effectsize</span></a> <a href="https://mastodon.social/tags/eta2" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>eta2</span></a> <a href="https://mastodon.social/tags/bayesian" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bayesian</span></a> <a href="https://mastodon.social/tags/brms" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>brms</span></a> <a href="https://mastodon.social/tags/r" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>r</span></a></p><p><a href="https://easystats.github.io/effectsize/reference/eta_squared.html#eta-squared-from-posterior-predictive-distribution" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">easystats.github.io/effectsize</span><span class="invisible">/reference/eta_squared.html#eta-squared-from-posterior-predictive-distribution</span></a></p>
Dr Mircea Zloteanu ☀️ 🌊🌴<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statstab</span></a> #397 How and Why I Switched from the ROC Curve to the Precision-Recall Curve to Analyze My Imbalanced Models</p><p>Thoughts: Can the eyewitness peeps explain how they correct for stimuli imbalance? 🤔</p><p><a href="https://mastodon.social/tags/roc" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>roc</span></a> <a href="https://mastodon.social/tags/roccurve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>roccurve</span></a> <a href="https://mastodon.social/tags/precisionaccuracy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>precisionaccuracy</span></a> <a href="https://mastodon.social/tags/auc" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>auc</span></a></p><p><a href="https://juandelacalle.medium.com/how-and-why-i-switched-from-the-roc-curve-to-the-precision-recall-curve-to-analyze-my-imbalanced-6171da91c6b8" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">juandelacalle.medium.com/how-a</span><span class="invisible">nd-why-i-switched-from-the-roc-curve-to-the-precision-recall-curve-to-analyze-my-imbalanced-6171da91c6b8</span></a></p>
Dr Mircea Zloteanu ☀️ 🌊🌴<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statstab</span></a> #396 If researchers find Cohen’s d = 8, no they didn’t</p><p>Thoughts: Sometimes an effect is so impressive that its unbelievable.</p><p><a href="https://mastodon.social/tags/effectsize" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>effectsize</span></a> <a href="https://mastodon.social/tags/cohend" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cohend</span></a> <a href="https://mastodon.social/tags/QRPs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QRPs</span></a> <a href="https://mastodon.social/tags/sesoi" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sesoi</span></a></p><p><a href="https://mmmdata.io/posts/2025/07/if-researchers-find-cohens-d-8-no-they-didnt/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">mmmdata.io/posts/2025/07/if-re</span><span class="invisible">searchers-find-cohens-d-8-no-they-didnt/</span></a></p>