veganism.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
Veganism Social is a welcoming space on the internet for vegans to connect and engage with the broader decentralized social media community.

Administered by:

Server stats:

208
active users

#explainability

0 posts0 participants0 posts today
Eric Maugendre<p><a href="https://social.coop/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://social.coop/tags/interpretability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>interpretability</span></a> vs <a href="https://social.coop/tags/explainability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>explainability</span></a> 🧵</p><p>"The explanations themselves can be difficult to convey to nonexperts, such as end users and line-of-business teams" <a href="https://www.techtarget.com/searchenterpriseai/feature/Interpretability-vs-explainability-in-AI-and-machine-learning" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">techtarget.com/searchenterpris</span><span class="invisible">eai/feature/Interpretability-vs-explainability-in-AI-and-machine-learning</span></a></p><p><a href="https://social.coop/tags/AIEthics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AIEthics</span></a> <a href="https://social.coop/tags/compliance" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compliance</span></a> <a href="https://social.coop/tags/taxonomy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>taxonomy</span></a> <a href="https://social.coop/tags/ethicalAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ethicalAI</span></a> <a href="https://social.coop/tags/AIEvaluation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AIEvaluation</span></a> <a href="https://social.coop/tags/linearRegression" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>linearRegression</span></a> <a href="https://social.coop/tags/trust" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>trust</span></a> <a href="https://social.coop/tags/neuralNetworks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuralNetworks</span></a> <a href="https://social.coop/tags/ML" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ML</span></a> <a href="https://social.coop/tags/governance" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>governance</span></a> <a href="https://social.coop/tags/AIgovernance" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AIgovernance</span></a> <a href="https://social.coop/tags/safety" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>safety</span></a> <a href="https://social.coop/tags/bias" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bias</span></a></p>
Eric Maugendre<p>"Feature importance helps in understanding which features contribute most to the prediction"</p><p>A few lines with <a href="https://hachyderm.io/tags/sklearn" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sklearn</span></a>: <a href="https://mljourney.com/sklearn-linear-regression-feature-importance/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">mljourney.com/sklearn-linear-r</span><span class="invisible">egression-feature-importance/</span></a> </p><p><a href="https://hachyderm.io/tags/interpretability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>interpretability</span></a> <a href="https://hachyderm.io/tags/explainability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>explainability</span></a> <a href="https://hachyderm.io/tags/AIethics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AIethics</span></a> <a href="https://hachyderm.io/tags/compliance" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compliance</span></a> <a href="https://hachyderm.io/tags/taxonomy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>taxonomy</span></a> <a href="https://hachyderm.io/tags/ethicalAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ethicalAI</span></a> <a href="https://hachyderm.io/tags/AIevaluation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AIevaluation</span></a> <a href="https://hachyderm.io/tags/linearRegression" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>linearRegression</span></a> <a href="https://hachyderm.io/tags/featureEngineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>featureEngineering</span></a></p>
Eric Maugendre<p><span class="h-card" translate="no"><a href="https://a.gup.pe/u/datadon" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>datadon</span></a></span></p><p>"The following sections discuss several state-of-the-art interpretable and explainable <a href="https://hachyderm.io/tags/ML" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ML</span></a> methods. The selection of works does not comprise an exhaustive survey of the literature. Instead, it is meant to illustrate the commonest properties and inductive biases behind interpretable models and [black-box] explanation methods using concrete instances."<br><a href="https://wires.onlinelibrary.wiley.com/doi/full/10.1002/widm.1493#widm1493-sec-0010-title" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">wires.onlinelibrary.wiley.com/</span><span class="invisible">doi/full/10.1002/widm.1493#widm1493-sec-0010-title</span></a> 🧵</p><p><a href="https://hachyderm.io/tags/interpretability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>interpretability</span></a> <a href="https://hachyderm.io/tags/explainability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>explainability</span></a> <a href="https://hachyderm.io/tags/aiethics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>aiethics</span></a> <a href="https://hachyderm.io/tags/compliance" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compliance</span></a> <a href="https://hachyderm.io/tags/taxonomy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>taxonomy</span></a> <a href="https://hachyderm.io/tags/ethicalai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ethicalai</span></a> <a href="https://hachyderm.io/tags/aievaluation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>aievaluation</span></a> <a href="https://hachyderm.io/tags/linearRegression" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>linearRegression</span></a></p>
Eric Maugendre<p>Model "<a href="https://hachyderm.io/tags/interpretability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>interpretability</span></a> and [black-box] <a href="https://hachyderm.io/tags/explainability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>explainability</span></a>, although not necessary in many straightforward applications, become instrumental when the problem definition is incomplete and in the presence of additional desiderata, such as trust, causality, or fairness."</p><p><a href="https://wires.onlinelibrary.wiley.com/doi/full/10.1002/widm.1493" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">wires.onlinelibrary.wiley.com/</span><span class="invisible">doi/full/10.1002/widm.1493</span></a></p><p><a href="https://hachyderm.io/tags/aiethics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>aiethics</span></a> <a href="https://hachyderm.io/tags/compliance" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compliance</span></a> <a href="https://hachyderm.io/tags/taxonomy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>taxonomy</span></a> <a href="https://hachyderm.io/tags/ethicalai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ethicalai</span></a> <a href="https://hachyderm.io/tags/aievaluation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>aievaluation</span></a></p>