veganism.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
Veganism Social is a welcoming space on the internet for vegans to connect and engage with the broader decentralized social media community.

Administered by:

Server stats:

260
active users

#datadev

1 post1 participant0 posts today
Eric Maugendre<p><span class="h-card" translate="no"><a href="https://a.gup.pe/u/data" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>data</span></a></span> <span class="h-card" translate="no"><a href="https://a.gup.pe/u/datadon" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>datadon</span></a></span> 🧵</p><p>Accuracy! To counter regression dilution, a method is to add a constraint on the statistical modeling.<br>Regression Redress restrains bias by segregating the residual values.<br>My article: <a href="http://data.yt/kit/regression-redress.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">http://</span><span class="ellipsis">data.yt/kit/regression-redress</span><span class="invisible">.html</span></a></p><p><a href="https://hachyderm.io/tags/bias" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bias</span></a> <a href="https://hachyderm.io/tags/modeling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>modeling</span></a> <a href="https://hachyderm.io/tags/dataDev" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataDev</span></a> <a href="https://hachyderm.io/tags/AIDev" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AIDev</span></a> <a href="https://hachyderm.io/tags/modelEvaluation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>modelEvaluation</span></a> <a href="https://hachyderm.io/tags/regression" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>regression</span></a> <a href="https://hachyderm.io/tags/modelling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>modelling</span></a> <a href="https://hachyderm.io/tags/dataLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataLearning</span></a> <a href="https://hachyderm.io/tags/linearRegression" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>linearRegression</span></a> <a href="https://hachyderm.io/tags/probability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>probability</span></a> <a href="https://hachyderm.io/tags/probabilities" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>probabilities</span></a> <a href="https://hachyderm.io/tags/statistics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statistics</span></a> <a href="https://hachyderm.io/tags/stats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>stats</span></a> <a href="https://hachyderm.io/tags/correctionRatio" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>correctionRatio</span></a> <a href="https://hachyderm.io/tags/ML" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ML</span></a> <a href="https://hachyderm.io/tags/distributions" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>distributions</span></a> <a href="https://hachyderm.io/tags/accuracy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>accuracy</span></a> <a href="https://hachyderm.io/tags/RegressionRedress" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RegressionRedress</span></a> <a href="https://hachyderm.io/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://hachyderm.io/tags/RStats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RStats</span></a></p>
Eric Maugendre<p><span class="h-card" translate="no"><a href="https://a.gup.pe/u/data" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>data</span></a></span> <span class="h-card" translate="no"><a href="https://a.gup.pe/u/datadon" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>datadon</span></a></span> 🧵</p><p>How to assess a statistical model?<br>How to choose between variables?</p><p>Pearson's <a href="https://hachyderm.io/tags/correlation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>correlation</span></a> is irrelevant if you suspect that the relationship is not a straight line.</p><p>If monotonic relationship:<br>"<a href="https://hachyderm.io/tags/Spearman" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Spearman</span></a>’s rho is particularly useful for small samples where weak correlations are expected, as it can detect subtle monotonic trends." It is "widespread across disciplines where the measurement precision is not guaranteed".<br>"<a href="https://hachyderm.io/tags/Kendall" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Kendall</span></a>’s Tau-b is less affected [than Spearman’s rho] by outliers in the data, making it a robust option for datasets with extreme values."<br>Ref: <a href="https://statisticseasily.com/kendall-tau-b-vs-spearman/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">statisticseasily.com/kendall-t</span><span class="invisible">au-b-vs-spearman/</span></a></p><p><a href="https://hachyderm.io/tags/normality" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>normality</span></a> <a href="https://hachyderm.io/tags/normalDistribution" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>normalDistribution</span></a> <a href="https://hachyderm.io/tags/modeling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>modeling</span></a> <a href="https://hachyderm.io/tags/dataDev" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataDev</span></a> <a href="https://hachyderm.io/tags/AIDev" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AIDev</span></a> <a href="https://hachyderm.io/tags/ML" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ML</span></a> <a href="https://hachyderm.io/tags/modelEvaluation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>modelEvaluation</span></a> <a href="https://hachyderm.io/tags/regression" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>regression</span></a> <a href="https://hachyderm.io/tags/modelling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>modelling</span></a> <a href="https://hachyderm.io/tags/dataLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataLearning</span></a> <a href="https://hachyderm.io/tags/featureEngineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>featureEngineering</span></a> <a href="https://hachyderm.io/tags/linearRegression" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>linearRegression</span></a> <a href="https://hachyderm.io/tags/modeling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>modeling</span></a> <a href="https://hachyderm.io/tags/probability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>probability</span></a> <a href="https://hachyderm.io/tags/probabilities" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>probabilities</span></a> <a href="https://hachyderm.io/tags/statistics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statistics</span></a> <a href="https://hachyderm.io/tags/stats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>stats</span></a> <a href="https://hachyderm.io/tags/correctionRatio" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>correctionRatio</span></a> <a href="https://hachyderm.io/tags/ML" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ML</span></a> <a href="https://hachyderm.io/tags/Pearson" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Pearson</span></a> <a href="https://hachyderm.io/tags/bias" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bias</span></a> <a href="https://hachyderm.io/tags/regressionRedress" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>regressionRedress</span></a> <a href="https://hachyderm.io/tags/distributions" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>distributions</span></a></p>
Eric Maugendre<p><span class="h-card" translate="no"><a href="https://a.gup.pe/u/data" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>data</span></a></span> <span class="h-card" translate="no"><a href="https://a.gup.pe/u/datadon" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>datadon</span></a></span> 🧵</p><p>Redressing <a href="https://hachyderm.io/tags/Bias" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Bias</span></a>: "Correlation Constraints for Regression Models":<br>Treder et al (2021) <a href="https://doi.org/10.3389/fpsyt.2021.615754" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">doi.org/10.3389/fpsyt.2021.615</span><span class="invisible">754</span></a></p><p><a href="https://hachyderm.io/tags/dataDev" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataDev</span></a> <a href="https://hachyderm.io/tags/linearRegression" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>linearRegression</span></a> <a href="https://hachyderm.io/tags/modeling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>modeling</span></a> <a href="https://hachyderm.io/tags/probability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>probability</span></a> <a href="https://hachyderm.io/tags/probabilities" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>probabilities</span></a> <a href="https://hachyderm.io/tags/statistics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statistics</span></a> <a href="https://hachyderm.io/tags/stats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>stats</span></a> <a href="https://hachyderm.io/tags/modelling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>modelling</span></a> <a href="https://hachyderm.io/tags/regression" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>regression</span></a> <a href="https://hachyderm.io/tags/correctionRatio" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>correctionRatio</span></a> <a href="https://hachyderm.io/tags/skLearn" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>skLearn</span></a> <a href="https://hachyderm.io/tags/scikitLearn" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scikitLearn</span></a> <a href="https://hachyderm.io/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a> <a href="https://hachyderm.io/tags/AIDev" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AIDev</span></a></p>
Eric Maugendre<p>´Technical people are blind to the fact they automatically solve dozens of problems every day in their regular workflow, any single one big enough to block another user for a few hours. Without even thinking about it.´</p><p>´There are usually two kinds of coders giving advises. A fresh one that has no idea how complex things really are, yet. Or an experienced one, that forgot it.´</p><p><span class="h-card" translate="no"><a href="https://framapiaf.org/@bitecode" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>bitecode</span></a></span> <a href="https://www.bitecode.dev/p/why-not-tell-people-to-simply-use" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">bitecode.dev/p/why-not-tell-pe</span><span class="invisible">ople-to-simply-use</span></a> 🧵</p><p><a href="https://hachyderm.io/tags/dev" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dev</span></a> <a href="https://hachyderm.io/tags/dataDev" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataDev</span></a> <a href="https://hachyderm.io/tags/install" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>install</span></a> <a href="https://hachyderm.io/tags/anaconda" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>anaconda</span></a> <a href="https://hachyderm.io/tags/packages" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>packages</span></a> <a href="https://hachyderm.io/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://hachyderm.io/tags/tech" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tech</span></a> <a href="https://hachyderm.io/tags/packaging" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>packaging</span></a> <a href="https://hachyderm.io/tags/complexity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>complexity</span></a></p>